Angles describe rotation. Rotation can be measured in terms of revolutions or degrees, but mathematics works best when we measure angles in radians. One revolution equals 360°, which equals 2π radians. (Recall that 2π is the circumference of a unit circle; it is approximately 6.28 .) For example, $1 / 4 \mathrm{rev}=90^{\circ}=\pi / 2$. By convention, positive angles describe counterclockwise rotation, and negative ones describe clockwise rotation.

When drawing an angle θ, we typically show where it rotates the positive x-axis to. This rotated ray is called the terminal ray of the angle. Now let (x, y) be any point on the terminal ray, and let $r=\sqrt{x^{2}+y^{2}}$ be the distance from the origin to this point. The cosine and sine of θ are

$$
\cos (\theta)=x / r \quad \text { and } \quad \sin (\theta)=y / r
$$

They depend only on θ, not on the particular choice of (x, y) on the terminal ray. For any θ, cosine and sine are always between -1 and 1 . There are four other, less important, trigonometric functions, defined in terms of cosine and sine: $\tan (\theta)=\sin (\theta) / \cos (\theta), \sec (\theta)=1 / \cos (\theta), \csc (\theta)=1 / \sin (\theta)$, and $\cot (\theta)=1 / \tan (\theta)$.

You will want to memorize the cosine and sine of a few angles between 0 and $\pi / 2: \cos (0)=1$, and $\sin (0)=0 ; \cos (\pi / 6)=\sqrt{3} / 2$, and $\sin (\pi / 6)=1 / 2 ; \cos (\pi / 4)=\sin (\pi / 4)=\sqrt{2} / 2 ; \cos (\pi / 3)=1 / 2$, and $\sin (\pi / 3)=\sqrt{3} / 2 ; \cos (\pi / 2)=0$, and $\sin (\pi / 2)=1$. Then you can find the trig values at many other angles using these basic identities, which follow from the definitions and the symmetries of a circle:

- $\cos (\theta)=\sin (\pi / 2-\theta)$.
- $\cos (-\theta)=\cos (\theta)$, and $\sin (-\theta)=-\sin (\theta)$.
- $\cos (\pi-\theta)=-\cos (\theta)$, and $\sin (\pi-\theta)=\sin (\theta)$.
- For any integer $k, \cos (\theta+k 2 \pi)=\cos (\theta)$ and $\sin (\theta+k 2 \pi)=\sin (\theta)$.

Given a number t such that $-1 \leq t \leq 1$, we might wonder which angles θ have cosine equal to t. If $t=1$, then clearly $\theta=0$ works; if $t=-1$, then $\theta=\pi$ works. Otherwise, there are two basic values of θ such that $\cos (\theta)=t$; one is between 0 and π, and the other is between π and 2π. We define the inverse cosine $\cos ^{-1}(t)$ to be the unique angle θ such that $\cos (\theta)=t$ and $0 \leq \theta \leq \pi$. So the two basic solutions of $\cos (\theta)=t$ are $\theta=\cos ^{-1}(t)$ and $\theta=2 \pi-\cos ^{-1}(t)$. We can add 2π to any solution to get another solution, so really there are two "chains" of solutions: $\theta=\cos ^{-1}(t)+k 2 \pi$ and $\theta=2 \pi-\cos ^{-1}(t)+k 2 \pi$.

Similarly, the inverse sine $\sin ^{-1}(t)$ is the unique angle θ such that $\sin (\theta)=t$ and $-\pi / 2 \leq \theta \leq \pi / 2$. The two chains of solutions of $\sin (\theta)=t$ are $\theta=\sin ^{-1}(t)+k 2 \pi$ and $\theta=\pi-\sin ^{-1}(t)+k 2 \pi$. For example, suppose that $\sin (3 \theta)=0.2$. We deduce that $3 \theta=\sin ^{-1}(0.2)+k 2 \pi$ or $3 \theta=\pi-\sin ^{-1}(0.2)+k 2 \pi$. Thus $\theta=\sin ^{-1}(0.2) / 3+k 2 \pi / 3$ or $\theta=\pi / 3-\sin ^{-1}(0.2) / 3+k 2 \pi / 3$. There are six solutions between 0 and 2π.

By convention, we write $\cos ^{2}(\theta)$ as shorthand for $(\cos (\theta))^{2}$. It does not mean $\cos \cos (x)$. For any $n \geq 0$, $\cos ^{n}(\theta)$ is shorthand for $(\cos (\theta))^{n}$. But note well that $\cos ^{-1}(t) \neq(\cos (t))^{-1}$! Similar remarks apply for sine. The Pythagorean theorem now yields

$$
\cos ^{2}(\theta)+\sin ^{2}(\theta)=1
$$

In general, statements like $\cos (\theta+\phi)=\cos (\theta)+\cos (\phi)$ are not true. Instead, we have sum formulae:

$$
\begin{aligned}
\cos (\theta+\phi) & =\cos (\theta) \cos (\phi)-\sin (\theta) \sin (\phi) ; \\
\sin (\theta+\phi) & =\sin (\theta) \cos (\phi)+\cos (\theta) \sin (\phi) .
\end{aligned}
$$

Formulae for $\cos (\theta-\phi)$ and $\cos (2 \theta)$ follow by replacing ϕ with $-\phi$ and θ, respectively.
Consider a triangle with sides of length a, b, c and angles of size α, β, γ (opposite a, b, c, respectively). The law of sines and the law of cosines are

$$
\frac{\sin (\alpha)}{a}=\frac{\sin (\beta)}{b}=\frac{\sin (\gamma)}{c} \quad \text { and } \quad c^{2}=a^{2}+b^{2}-2 a b \cos (\gamma)
$$

When $\gamma=\pi / 2$, these reduce down to the definition of sine and the Pythagorean theorem, $c^{2}=a^{2}+b^{2}$.

