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Integral calculus is motivated by the following question: Given a function f(x), how large is the area
between the graph y = f(x) and the x-axis? To be precise, let [a, b] be a closed interval, and assume that f
is continuous and nonnegative (that is, never below the x-axis) on [a, b]; then what is the area of the region
enclosed by y = f(x), the x-axis, and the lines x = a and x = b?

To answer this, we divide [a, b] into n equal subintervals, and we inscribe the region with n rectangles,
each with its base on one of the subintervals. If we add up the areas of these rectangles, then we get
an approximate value for the area of the whole region under the graph. The more rectangles we use, the

better our approximation should be. We define the (definite) integral
∫ b

a
f(x) dx to be the limit of these

approximations as the number n of rectangles goes to infinity; it is the exact area under the curve.

n = 16:n = 4: n = 8:

Areas are always positive, but integral calculus works better if we allow integrals to be negative. In
particular, suppose that y = f(x) does not stay above the x-axis, but encloses some areas below the axis.
Then the integral counts these areas as negative. In other words, the integral is the area of the enclosed
region above the axis, minus the area of the region below the axis. The true area enclosed by y = f(x) and

the axis is not
∫

b

a
f(x) dx but

∫
b

a
|f(x)| dx.

By adding areas together, it is easy to see that
∫ b

a
f(x) dx =

∫ c

a
f(x) dx +

∫ b

c
f(x) dx for any c in [a, b].

We can also integrate ”backwards” over [a, b]:
∫

a

b
f(x) dx is defined to be −

∫
b

a
f(x) dx.

The definition of definite integral is theoretically elegant but difficult to use in computations. For-
tunately, calculus provides a powerful alternative, as follows. For any function f , the function F is said
to be an antiderivative of f if f is the derivative of F . Of course, if F ′ = f , then for any constant C,
(F + C)′ = F ′ + C ′ = f + 0 = f , so we see that if F is an antiderivative, then so is F + C. It turns out that
all antiderivatives of f are of the form F + C. We denote “the antiderivative” F + C by

∫
f(x) dx.

The antiderivative of 0 is C. For k 6= −1,
∫

xk dx = xk+1/(k + 1) + C, while
∫

x−1 dx = ln |x| + C.
For k > 0,

∫
kx dx = kx/(ln k) + C; in particular,

∫
ex dx = ex + C. Also,

∫
sinx dx = − cosx + C, and∫

cosx dx = sin x + C. In general, antiderivatives can be very difficult to compute, but these rules help:

Theorem. Let k be a constant, and let f and g be two continuous functions. Then
A.

∫
f + g dx =

∫
f dx +

∫
g dx,

B.
∫

k · g dx = k ·
∫

g dx,
C.

∫
f · g′ + g · f ′ dx = f · g + C (this is called integration by parts), and

D.
∫

f ′(g) · g′ dx = f(g) + C (this is called integration by substitution).

For example, say f(x) = sinx and g(x) = 3x2, so that f(g) = sin(3x2) and (f(g))′ = cos(3x2) · 6x, by
the chain rule. Integration by substitution “undoes” the chain rule:

∫
cos(3x2) · 6x dx = sin(3x2) + C.

Similarly, integration by parts undoes the product rule of differentiation. The formula in part C is often
rewritten as

∫
f · g′ dx = f · g−

∫
g · f ′ dx. For example, it tells us that

∫
x cosx dx = x · sin x−

∫
1 · sin x dx;

since
∫

1 · sin x dx =
∫

sinx dx = − cosx + C, we see that
∫

x cosx dx = x sin x + cosx + C.
The following crucial theorem connects derivatives, antiderivatives, and definite integrals.

The Fundamental Theorem of Calculus. Let f be a continuous function on [a, b]. Then

A.
∫ b

a
f(x) dx = F (b) − F (a) for any antiderivative F of f , and

B. d

dx

∫
x

a
f(t) dt = f(x) for any x in [a, b]. That is,

∫
x

a
f(t) dt is an antiderivative of f(x).

Part A gives us a way to compute definite integrals, and earns the antiderivative its alternative name,

the indefinite integral. For example, suppose we want to compute
∫ 2

1
x2 dx. An antiderivative of x2 is x3/3,

so part A tells us that
∫ 2

1
x2 dx = 23/3 − 13/3 = 7/3.


