- 1. [4.36] Claim: $x, y \in \mathbb{Q} \Rightarrow x y \in \mathbb{Q}$. **Proof:** If x and y are both rational, then ...
- 2. [4.38]
 - The claim that "if xy and x are both rational, then y is too" is **Tralse**. **Proof:** ...
 - The claim that "if x y and x are both rational, then y is too" is **Falrue**. **Proof:** ...
- 3. [4.40] Claim: For all integers n, 3 ∤ (n² + 1).
 Proof: Let n be some integer. We proceed by cases, depending on ...
 - Say [...]. Then ...
 - Say [...]. Then ...

Having exhausted all cases for integers n, we conclude that the claim is true for all integers n.

4. [4.47] Claim: for $x, y \in \mathbb{R}^{\geq 0}$, we have $\sqrt{xy} \leq (x+y)/2$. **Proof:** We know that $r^2 \geq 0$ for any real number r, and therefore:

$$(x-y)^2 \ge 0$$

$$\Rightarrow \qquad \dots \ge \dots$$

I can insert a comment in the middle of a derivation like so...

$$\Rightarrow \dots \ge \dots$$
$$\Rightarrow (x+y)/2 \ge \sqrt{xy}$$

- 5. [4.48] **Claim:** for $x, y \in \mathbb{R}^{\geq 0}$, $\sqrt{xy} = (x+y)/2 \iff x = y$. **Proof:** We prove both directions of the mutual implication separately:
 - Sub-claim: for $x, y \in \mathbb{R}^{\geq 0}$, $\sqrt{xy} = (x+y)/2 \Rightarrow x = y$. Proof: ...
 - Sub-claim: for $x, y \in \mathbb{R}^{\geq 0}$, $x = y \Rightarrow \sqrt{xy} = (x + y)/2$. Proof: ...
- 6. [4.51] Claim: For $n \in \mathbb{Z}^{\geq 0}$, if $n \% 4 \in \{2, 3\}$, then n is not a perfect square. **Proof:** We prove the contrapositive. If n is a perfect square, then ...
- 7. [4.56] Claim: For $x, y \in \mathbb{R}^{>0}$, if $x^2 y^2 = 1$, then x or y (or both) is not an integer. **Proof:** Say that $x^2 - y^2 = 1$, and let us assume, for the sake of contradiction, that x and y are both positive integers. Then this is a contradiction, and therefore x and y cannot both be integers.
- 8. [4.61] False claim: If xy is rational, then x and y are rational. Disproof: ...