1. [4.36] Claim: $x, y \in \mathbb{Q} \Rightarrow x-y \in \mathbb{Q}$.

Proof: If x and y are both rational, then ...
2. [4.38]

- The claim that "if $x y$ and x are both rational, then y is too" is Tralse. Proof: ..
- The claim that "if $x-y$ and x are both rational, then y is too" is Falrue. Proof: ...

3. [4.40] Claim: For all integers $n, 3 \nmid\left(n^{2}+1\right)$.

Proof: Let n be some integer. We proceed by cases, depending on ...

- Say [...]. Then ...
- Say [...]. Then ...

Having exhausted all cases for integers n, we conclude that the claim is true for all integers n.
4. [4.47] Claim: for $x, y \in \mathbb{R}^{\geq 0}$, we have $\sqrt{x y} \leq(x+y) / 2$.

Proof: We know that $r^{2} \geq 0$ for any real number r, and therefore:

$$
\begin{array}{rlrl}
& & (x-y)^{2} & \geq 0 \\
\Rightarrow & \ldots & \geq \ldots
\end{array}
$$

I can insert a comment in the middle of a derivation like so...

$$
\begin{array}{lrl}
\Rightarrow & \ldots & \geq \ldots \\
\Rightarrow & (x+y) / 2 & \geq \sqrt{x y}
\end{array}
$$

5. [4.48] Claim: for $x, y \in \mathbb{R}^{\geq 0}, \sqrt{x y}=(x+y) / 2 \Longleftrightarrow x=y$.

Proof: We prove both directions of the mutual implication separately:

- Sub-claim: for $x, y \in \mathbb{R}^{\geq 0}, \sqrt{x y}=(x+y) / 2 \Rightarrow x=y$. Proof: ...
- Sub-claim: for $x, y \in \mathbb{R}^{\geq 0}, x=y \Rightarrow \sqrt{x y}=(x+y) / 2$. Proof: ...

6. [4.51] Claim: For $n \in \mathbb{Z} \geq 0$, if $n \% 4 \in\{2,3\}$, then n is not a perfect square.

Proof: We prove the contrapositive. If n is a perfect square, then ...
7. [4.56] Claim: For $x, y \in \mathbb{R}^{>0}$, if $x^{2}-y^{2}=1$, then x or y (or both) is not an integer.

Proof: Say that $x^{2}-y^{2}=1$, and let us assume, for the sake of contradiction, that x and y are both positive integers. Then this is a contradiction, and therefore x and y cannot both be integers.
8. [4.61] False claim: If $x y$ is rational, then x and y are rational.

Disproof: ...

