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What are we dealing with?
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What are we dealing with?

• DTI dataset (1mm isotropic voxels)

• Principle eigenvector streamlines

• 323k space curves

• Lots of short / broken segments
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What are we dealing with?
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Why clustering?

• Approximates tracts for:

• Visualization and selection

• Statistics

• Non-local modeling

a b

Fig. 2. Integral curve models generated from a 128× 128× 90 dataset with
a voxel size of 1. 7mm× 1. 7mm× 1. 7mm. (a) shows 438, 042 integral curves
generated from a jittered regular grid of 256 × 256 × 180, with minimum
length set to 13mm and minimum linear anisotropy set to 0.15. (b) shows
the model generated from the same dataset and the same jittered regular grid
sampling, and with the added culling and gray matter projection constraints.
The culling threshold on dSt is set to 1. 0mm with t = 0. 5mm. The model in
(b) has 6, 113 integral curves. Color is mapped to the linear anisotropy value.
Redder means higher linear anisotropy.

We also set a constraint that an integral curve should project into

the gray matter. This constraint removes incoherent fibers that

break in the white matter due to the partial-volume effect. This is

desirable since we focus our effort in this paper on clustering

coherent fiber structures. We accomplished this constraint by

segmenting the brain into white matter, gray matter, and cere-

brospinal fluid compartments using the FAST [23] segmentation

tool. The segmentation was performed using the non-diffusion-

weighted image as well as scalar maps of the trace of the

diffusion tensor and fractional anisotropy. We then discarded the

integral curves that would not have extended into the gray matter

within 3mm. We extended a curve by following the direction

of each curve at its two end points. We estimated the 3mm

threshold based on the observation of the gaps between the ends

of some curves that appear to project into the gray matter and

the segmented gray matter. The estimation was also dependent

on the minimum linear anisotropy threshold and the parameters

on the FAST segmentation algorithm that affect the shapes of the

segmented areas. We colored and rendered the resultant curves

and superimposed them on background anatomical images to

provide context.

Fig. 2 shows the difference between two integral curve models

without and with the culling and gray matter projection con-

straints. Both sets of the integral curves were generated on a

128 × 128 × 90 dataset with a voxel size of 1. 7mm × 1. 7mm ×
1. 7mm. Both sets of the integral curves were generated from a

jittered regular grid of 256 × 256 × 180, with minimum length

set to 13mm and minimum linear anisotropy set to 0.15. Without

the culling and gray matter projection constraints, Fig. 2(a) shows

438, 042 integral curves. With the constraints, Fig. 2(b) shows the

generated model of 6, 113 integral curves. The culling threshold

on dSt was set to 1. 0mm. The minimum threshold t was set

to 0. 5mm, much smaller than the resolution along each of the

data dimensions, to remove the distance contribution from the

parts of the two curves that ran very closely and were likely

from the same feature in the data. Some of the thresholds for

generating the curves such as minimum length, minimum linear

anisotropy and minimum threshold t were set empirically. We

tried to cull the spurious fibers from noise and other artifacts and

Fig. 3. The clustering result of the model in 2(b) using the single linkage
algorithm and dLt as the proximity measure with a threshold of 3. 5mm. The
top left corner of the interactive interface contains three sliders for adjusting
the proximity threshold, minimum mean fractional anisotropy values, and
minimum number of curves in a cluster.

retain anatomically meaningful fibers by visually examining the

effect of different settings on these thresholds.

D. Single linkage clustering algorithm

We used the agglomerative hierarchical clustering method [8]

and defined the distance between two clusters as the minimum

proximity value (i.e., nearest) between any two curves from two

clusters (e.g., one curve from cluster X and its closest neighbor in

cluster Y). This is called a single-linkage algorithm because any

two clusters with a single link (pairs of similar curves) between

them are clustered together. If we define the distance between two

clusters as the maximum proximity value (i.e., farthest) between

any two curves for two clusters, we have a complete linkage

algorithm. The rationale for choosing a single linkage algorithm

over a complete linkage algorithm is that some fiber bundles,

such as some parts of the corpus callosum and corona radiata,

may spread out in a sheet-like structure, although we still consider

them to be coherent fiber bundles. The complete linkage algorithm

would likely break them into smaller pieces while the single

linkage algorithm would group them as whole bundles.

We applied the single linkage algorithm to our curves using the

proximity measure dLt. The algorithm followed the three general

broad steps to generate any number of clusters from a set of

curves:

1) Obtain a set of n singleton clusters.

2) Merge the two nearest clusters.
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The Goal

• Automatic clustering

• Dense whole-brain tractogram

• Approximate anatomical tracts
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The Hypothesis

• Short segments can aid clustering
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How does it work?

1. Every curve begins as its own cluster

2. Join clusters of two closest curves

3. Repeat step 2 until termination
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How does it work?

• Single-link distance

• A ~ε B ⇔ ∃ {X1, X2, ..., Xk} s.t. d(A, X1) < ε, 
d(Xk, B) < ε, d(Xi, Xi+1) < ε ∀ 1 ≤ i < k
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Why agglomerative?

• Provides a cluster hierarchy

• Easy to understand

• Parallelizable

• Flexible termination conditions
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Why a new measure?

• Previous work:

• Corouge

• Brun

• Zhang

• Ding

17



Previous Work

• Corouge, et al., ISBI 2004

• Minimum-distance 
vertex pairs

• Minimum, mean, max 
of pair distances
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Previous Work

• Brun, et al., EUROCAST 2003

• Endpoint distance
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Previous Work

• Zhang & Laidlaw, TVCG 2008

• Mean distance above 
threshold
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Previous Work

• Zhang & Laidlaw, TVCG 2008

• Mean distance above 
threshold ... from shorter 
curve
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Previous Work

• Zhang & Laidlaw, TVCG 2008

• Mean distance above 
threshold ... from shorter 
curve

• But!
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Previous Work

• Ding, et al., Vis 2001

• Corresponding segment

• Mean vertex distance in 
segment

23



Previous Work

• Ding, et al., Vis 2001

• Corresponding segment

• Mean vertex distance in 
segment
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The New Measure

• Detects overlapping segment

• Penalizes skewed curves
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The New Measure

• Trimming

• Induced relative orientation

• Matching order

• Match length ratio
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Trimming
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Trimming
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What we want
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What we (can) get
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Trimming Excess Matches
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Trimming Excess Matches

d(A,B) = mean distance in trimmed segment
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The New Measure

• Trimming

• Induced relative orientation

• Matching order

• Match length ratio
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Relative Orientation

34



Relative Orientation
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A Good Match
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Not So Good
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Forcing Relative 
Orientation
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Forcing Relative 
Orientation

d(A,B) = mean distance in trimmed segment, with forced 
relative orientation
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The New Measure

• Trimming

• Induced relative orientation

• Matching order

• Match length ratio
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Without Orientation 
Forcing or Trimming
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With Forced 
Orientation: Whoa!
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Matching Order
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Matching Order
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Matching Order
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All Matching Orders
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All Matching Orders

d(A,B) = min mean distance in trimmed segment with forced 
orientation, over all four matching orders
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The New Measure

• Trimming

• Induced relative orientation

• Matching order

• Match length ratio
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Success!
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Success!
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Still Not Quite Right
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An Extreme Case
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An Extreme Case
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An Extreme Case
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Match Length Ratio

• Infinite for perpendicular segments

• Infinite for end-to-end segments
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The New Measure

• d(A,B) = minimum over all four matching 
orders of:

• Mean distance between points

• In trimmed segment

• With forced relative orientation

• Multiplied by the match length ratio
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The New Measure

• Detects overlapping segment

• Penalizes skewed curves
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The New Measure

• Exploits agglomerative clustering with single-
link cluster distance

A

C

B
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The New Measure

• Exploits agglomerative clustering with single-
link cluster distance

• d(A,C) < ε, d(B,C) < ε

• d(A,B) = ∞ and yet A ~ε B

A

C

B
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A Failure Case

• A single short segment can join two 
otherwise strongly separated clusters

• Post-processing the clustering is likely 
necessary
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What We’d Like

1. Compute all pairwise curve similarities

2. Find highest similarity

3. Merge those clusters

4. GOTO 2
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What We’d Like

• Can compute 1600 similarities / s

• But  we have 300k curves!

• 45 billion similarities, 400 GB, 11.5 months

• Even decimated, 30k curves

• 450 million similarities, 5.1 GB, 83 hours
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What we need

• Parallelism

• Only the highest elements of the similarity 
matrix in memory
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Efficient Clustering
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Efficient Clustering

• 30k curves with 13 hosts

• 6.5 hours, 5.1 GB total

• 10 priority queues of increasing size: 8MB, 
22MB, 56MB, 130MB... 1.1GB

• Only one priority queue must be in memory 
at a time to do clustering
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Thanks!

• David Laidlaw, my advisor

• Evren Ozarslan for inviting me
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Questions?

• Motivation

• Agglomerative clustering

• Inter-curve similarity measures

• Efficient clustering implementation
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