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As a general instruction for this entire lab, don’t get too caught up on writing proofs during the lab time.
It’s better to think through each claim, work out some examples to convince yourself that it’s correct, sketch
out a proof, and then move on. Then come back to the proof on your own time later. You will hand in your
work to the questions that are given letters (like Question A below) as PS13. All other questions are just
ones that you should try to answer as you go, to guide you through the lab, but you don’t have to turn in
your answers for them.

1 Matrices

Matrices are covered in Section 2.4.2 of our textbook, but here’s the short version. A matriz is a rectangular
grid of numbers. A “p X ¢ matrix” has p rows and ¢ columns. For example, here’s a 2 X 3 matrix:

5 —-12 0

7T 7T 25 ]
We locate elements of a matrix by the row and column in which they fall. The top row of a p X ¢ matrix is
row 0; the bottom row is row p— 1. Similarly, the left column of a p X ¢ matrix is column 0; the right column
is column g — 1. (The convention among mathematicians, and in your textbook, is to number starting from 1

instead. Many programming languages, including Python, number starting from 0, so that’s the convention
we adopt here. Starting from 0 makes the mathematical notation uglier, but your code cleaner.)

If M is a p X ¢ matrix, then for any i and j (satisyfing 0 < ¢ <p—1and 0 < j < ¢ — q), M;; denotes the
number in row 4 (starting from zero, remember) and column j of M. There are three basic operations on
matrices:

e Scalar Multiplication: If M is a p X ¢ matrix and ¢ is a number, then the scalar product cM is a
p X g matrix, defined by multiplying each entry of M by c. In other words,

(CM)Z'j =cC- M”
e Addition: If M and N are both p x ¢ matrices, then the sum M + N is a p X ¢ matrix, defined by
adding the corresponding entries of M and N. That is,
(M + N)ij = Mij + Nz]
Notice that the dimensions p and ¢ of the two matrices must match in order for their sum to be defined.

e Multiplication: If M is a p X ¢ matrix and N is a ¢ X r matrix, then the product MN is a p X r
matrix, defined by

qg—1
(MN)ij = > MyNy;.
k=0
Here’s another way to think of it. The (i, 7)th entry of M N is what you get by multiplying the ith

row of M by the jth column of N, entry by entry, and then summing up those products. Notice that
the dimensions of the two matrices must match in a particular way, for their product to be defined.

Matrices enjoy many algebraic properties like those of the real numbers. Here are a few that we’ll need later.
e Let L be a p x ¢ matrix and M and N be ¢ x r matrices. Then L(M + N) = LM + LN.

Question A: Why? Prove that this observation is correct. Here’s a start: Let T = M + N, and
V =LT =L(M+ N). What is T;;7 What is V;;7

This observation tells us that matriz left-multiplication is distributive over matrix addition.
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e Let L be a p x ¢ matrix, M a ¢ X r matrix, and N an r x s matrix. Then L(MN) = (LM)N.

Question B: Why? Sketch a proof to convince yourself of this observation. Here’s a start: Let
T=MN,andV =LM, X =LT =L(MN),andY = VN = (LM)N. What is T;;7 What is V;;?
What are X;; and Y;;7 (See below for a couple lemmas that may be helpful.)

This observation tells us that matriz multiplication is associative.

Here are a couple properties of summations that can be useful in proving things about matrix multiplication,
restated from PS12:

e Lemma 1: kzxz _ kal

That is, if you have a summation over some index (here ¢; the range of the summation doesn’t matter)
and a scalar multiplicative factor that is constant with respect to the change of that index (as k is
above), it can go inside or outside the summation. There’s nothing mysterious about this; the above
statement is just a more compact and formal way of writing the following:

k(zo+ a1 +a2+...) =kxo+ kxy + kza + ...

This is obviously true, due to the distributive property of scalar multiplication over scalar addition.

e Lemma 2:
S S0) =X (Sew)
i j i j
=2 (Xww) = 2w (Xw)
j i j i
That is, if you have nested summations of products of things that are entirely independent of each
other’s summation index, then you can switch the order of the summation at will. The equality in
the first line is justified by Lemma 1 above: z; is a constant with respect to the changing inner index
j. Similarly on the second line, y; is a constant with respect to the changing inner index i. The
equality between the lines is just the observation that if nothing is between the summation symbols,

then you can change the order of the summations.

Notice I said “left-multiplication” up in the observation about distributivity? What was that about? Well,
there’s one property of arithmetic over the real numbers that matrices don’t have: matriz multiplication is
not commutative — M N and N M may be two entirely different matrices. We’'ll investigate this more later,
but for right now, we’ll consider an easy case:

e Let L be a p x ¢ matrix, and M a ¢ X p matrix, where p # q. Then LM # ML.
Question C: Why not?

There are two special matrices, denoted O and I, that play roles similar to those of 0 and 1 in the real
numbers. For any p and ¢, O is the p x ¢ zero matriz, consisting entirely of zeros. (There is an O for each
combination of p and q. When we see O, we figure out p and ¢ from context.)

For any n, I is the n x n identity matriz, defined by I,; =1 if i = j and I;; = 0 if ¢ # j. (There is an I for
each n.) For example, the 3 x 3 identity matrix is

o O =
o = O

0
0
1

e Let N be any g X r matrix. Then ON = O = NO.
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2

Question D: Why? Prove it from the definitions. And what is the specific matrix that O represents
in each part of this equation?

The way that O behaves should remind you of a problem from one of the early problem sets. O is the
zero of the matriz multiplication operation, or the multiplicative zero for matrices.

Let N be any g x r matrix. Then IN = N = NI.

Question E: Why? Prove it from the definitions. And what is the specific matrix that I represents
in each part of this equation?

The way that I behaves should also be familiar. I is the identity of the matriz multiplication operation,
or the multiplicative identity for matrices.

Matrices in Python, with Numpy

Today we’ll use Python to explore matrix computation, and how it fits with Hamming codes.

1.

2.1

Open up the text editor of your choice, enter the line print "Hello world!" in a new file, and save
it as lab.py in some convenient working location (perhaps the Desktop?).

Open two terminal windows, and navigate to your working directory in both. Put the terminal windows
on the left side of your screen, one in the upper left corner, and one in the lower left.

Do not skip this step!

e Run the command pwd in both terminals. Confirm that you get the same output from each.

e Run the command 1s in both terminals. Confirm that you see lab.py in the output from each.

e Run the command python lab.py in both terminals. Confirm that you see Hello world! as the
output both times.

Working with the Interactive Interpreter

. In the upper terminal, run the command python with no arguments. (You may also run python3 if

you like, but the instructions in the lab are written in Python 2.) You should get something like:

Python 2.7.6 (v2.7.6:3a1db0d2747e, Nov 10 2013, 00:42:54)

[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin

Type "help", "copyright", "credits" or "license" for more information.
>>>

If you’ve never seen this before, welcome to the Python interactive interpreter! You can enter short
snippets of Python code here, and the interpreter will run them. It’s like entering a program line-by-
line. The “>>> 7 is your prompt, which tells you that the interpreter is ready for you to enter some
code. Try duplicating this session:

>>> x =5
>>> y = 6
>>>z =x+y

>>> print z
11
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The truly special feature about the interactive interpreter is this: if you enter an expression, rather
than a statement, the interpreter evaluates your expression and then shows you the value. Behold!

>>> 3 + 7

10

>>> 3.0/ 7.0
0.42857142857142855
>>> x + 4

9

>>> x +4+y

15

>>> y

6

This lets you investigate the values of variables while you’re in the middle of thinking through your
code. It also lets you test out code quickly without needing to write it in a file, save it, and run it from
the command line.

2. Okay, now we're ready to work with matrices, using the numpy (numerical Python) module. Duplicate
the following in your interactive interpreter (type it in by hand; don’t just copy and paste!):

>>> from numpy import *
>>> M = array([[5, -1.2, 0], [7, 7, 2.5]11)
>>> M
array([[ 6. , -1.2, 0. 1],
7., 7., 251D

Here we create a matrix M that duplicates the example from the first page. Notice how this happens:
we pass a list of lists as the argument to the constructor for the array class, which is defined in numpy
module. (An array is basically the same as a matrix.) Each inner list is a row of the matrix we want
to make. Note that the inner lists have to be the same length; if they differ, then you’ll get an error.

When the interpreter shows you the value of an array object, it prints it out one row at a time, (kinda)
similar to how you would write it on paper.

3. Let’s look more closely at that matrix, and what we can do with it.

e We can find out the number of rows and columns, and get the value at a particular index.

>>> M.shape
2, 3)

>>> M[0,0]
5.0

>>> M[1,2]
2.5

e We can also use the indexing notation to get a whole row or a whole column. Rather than entering
a specific index, we can instead put in a :, which means “all possible indices”.

>>> M[O0, :]

array([ 5. , -1.2, 0. 1)
>>> M[:,1]

array([-1.2, 7. 1)
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2.2

>>> M[:,:]
array([[ 5. , -1.2, 0. 1],
(7., 7., 251D

Notice that when we give a specific row index, but : as the column index, we get every entry with
that row index, and any column index. In other words, we get the entire row! Ditto for entering :
as the row index, and specifying a column index. If we put in : for both indices, then we get back
the whole matrix. (This last thing is rarely necessary; if we wanted the whole matrix, we could
just write M. But it’s important to note that : doesn’t mean anything more than “all possible
indices”.)

e We can take the dot product of two vectors, using the dot () method. Remember, the dot product
of two vectors is the sum of the products of their corresponding entries. So the lengths of the
vectors must match in order to take their dot product.

>>> M[1,:]

array([ 7. , 7. , 2.5])
>>> M[O0,:].dot (M[1,:])
26.600000000000001

Don’t worry about the 00000000000001 bit.

Question F: Do the math by hand: why does the dot product of M[0, :] and M[1, :] equal 26.67

Working with Your Editor

Let’s switch over to writing code in the editor.

DO NOT SKIP THIS STEP: Before you do anything else, you must configure your editor so that
it indents using only spaces, and by exactly four spaces. This is absolutely critical. You may recall
that whitespace is meaningful in Python; that’s why I'm having you do this. All the example code that I
give you in this document has four spaces as the indent, so you need to be configured to match it, or things

may be way more difficult than necessary. If you're running TextWrangler, here’s how to do it:
1.

© PN w

10.

2. Select “Editor Defaults” in the left panel.
3.
4. You also need to specify the tab width as four spaces. Depending on your version, there may be a

Go to the TextWrangler menu and select Preferences.
Make sure that the “Auto-expand tabs” option is checked.

box at the bottom where you can enter this, or you might need to click the “Set...” button next to
the “Default font” box, which opens another window where you can set the tab width. Either way,
enter 4 in the tab-width box.

Close out of the preferences window.

With your document open, go to the Edit menu and select Text Options....

Make sure that the “Auto-expand tabs” option is checked.

Type 1234567890 on a blank line of your document. Hit Return.

At the beginning of the next line, hit Tab, then type abcd. The a should line up with the 5 above.
If this doesn’t work for you, ask someone for help before moving on.

Now erase the stuff currently in your editor window and replace it with this:

from numpy import *
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Anything else that you write should go somewhere below this line; the first thing your program needs to do
is load up the numpy module.

1. Now that we know how to take the dot product of two vectors (which, again, is the sum of the products
of their corresponding elements), let’s take another look at the definition of the matrix product.

If M is a p x ¢ matrix, and N is a g X r matrix, then the product M N is a p x r matrix with these

entries:
qg—1

(MN)ij =Y M Ni.
k=0
What’s that summation on the right-hand side? It’s just the dot product of row ¢ in M with column
jin N.

Question G: In your editor, write a function called mult() that takes two matrices as arguments,
and computes and returns a new matrix equal to their product. Let me get you started:

def mult(M, N):
p = M.shape[0]
if N.shape[0] !'= M.shape[1]:
raise ValueError("Matrix dimensions must match!")
N.shape[1]
zeros([p,r])
for i in range(p):

R
nou

for j in range(r):
# ... Fill in just one line here ...
return L

Read through each line here and make sure you understand what’s going on. Investigate by running
snippets of code in the interactive interpreter. In particular, what exactly does L = zeros([p,ql)
mean? Why did I do that?

After you’ve filled in your multiplication function, test it. Come up with a couple pairs of matrices that
can be multiplied together, and work out by hand what you expect the answer to be. Then compare
to what your mult() function produces. There are a couple ways to do this: non-interactively (the
way you're probably used to from Intro) and interactively:

e Non-interactively: In your program, after the definition of mult (), define variables A and B for
one pair of matrices (using the array constructor). Then print out A, B, and mult (A, B) using
three calls of the print command, just as you ordinarily would.

Now switch to the lower terminal window (the one that doesn’t have the interactive interpreter
running in it). Run the command python lab.py, and check to see that the results make sense.
Then go change A and B to be your next example pair, and run again, and so on.

e Interactively: Switch over to your interactive interpreter (the top terminal window). Define
two matrices A and B as in the instructions above. Then enter the command import lab. This
will grab the code from lab.py; namely, the definition of your mult () function. Then just run
lab.mult(A,B) and see what output it gives you. Redefine A and B as your next pair of test
matrices, and run lab.mult(A,B) again, and so on. (Notice you need type lab.mult, not just
mult; when you import a module, its contents are only accessible through the module’s name.)

When you’re running interactively, the code defined in your .py file only gets loaded when you
call import. If you change the file, you need to reload it, like so: reload(lab).
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2. Now let’s investigate the tricky case of non-commutativity of matrix multiplication.
e Let L and M both be p x p matrices. Then it is not necessarily the case that LM = M L.

Question H: Why not? Use your multiplication function to investigate. Provide a counterex-
ample for p = 2.

With this example, we can conclude that matriz multiplication is not commutative. In other words,
order matters in matrix multiplication, and left-multiplying M by L (that is, computing LM) is not
the same as right-multiplying M by L (that is, computing M L).

3. numpy includes a special command to create an identity matrix: eye. eye(3) makes a 3 x 3 identity
matrix. Use this and your multiplication function to answer the following question:

Question I: What do you get when you multiply the n x n identity matrix I by an n X p matrix N7

3 Setting up the (7,4) Hamming code

Now we’ll study the classic (7,4) Hamming code, which is used to correct errors in the transmission and
storage of data. This material is discussed, in a slightly different way, in Section 4.5 of our textbook.

Henceforth we’re going to work with matrices of Os and 1s, and we're going to work modulo 2. That is,
whenever we compute a new matrix, we will replace each even number with 0 and each odd number with 1.
The algebraic properties (distributivity, associativity, identity, etc.) that you explored earlier will still hold.
In Python, we’ll just follow up each basic matrix operation (mult, etc.) with a “% 2”. numpy knows how to
apply the mod operation to every element of the matrix.

Define the encoder, decoder, and checker matrices E, D, and C like this:

10 1 1]
110 1
1110 8883?88 1111000
E=|1000|,D= ,C=|1100110
0100 0000010 1010101
1
00 1 0 000000
00 0 1|

Before we go any further, inspect these matrices. They are not random gibberish; they contain patterns.
Parts of E and D look like matrices that you've seen already. Which ones? And look at the columns of C,
from right to left. Can you see the pattern in them?

Side note: It can be a hassle to manually type in big matrices like these. Here’s how I created E in Python,
using the concatenate(), ones(), and eye () functions from numpy:

E = concatenate( [concatenate( [ones([3,1]), 1-eye(3)], 1), eye(4)], 0)

Inspect that code, and see if you can understand what’s going on in it. Experiment with the concatenate
and ones functions. Here’s a simpler example to dissect—the inner call to concatenate above:

concatenate( [ones([3,1]), 1-eye(3)], 1)
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Question J: What are the shapes of the two matrices I created in the middle of that command? What
does concatenate() do, in general? What does the second argument concatenate () mean? (Googling for
the numpy documentation of concatenate () might help you answer this question, along with experimenting
with building your own matrices with it, using the interactive interpreter.)

Now use these functions (and maybe zeros()) to build D. There isn’t a good shortcut for defining C' (not
using those functions, anyway), so you should just type that one in.

Question K: Which products of E, D, and C are well-defined? (You should find three.) What are they?
What patterns do you observe in them? (Remember that we’re doing everything mod 2, so after multiplying,
you've got to have a % 2!)

4 Transmission with zero errors

Suppose that you want to send your friend the message 1101. You place this bit string into a 4 x 1 matrix
called M:

_ O = =

Then you encode the message, by computing EM. (Is this a well-defined matrix product? What are its
dimensions?) You send that bit string EM to your friend, over the Internet or a competing communications
network (word of mouth? trained cephalopods?).

When she receives your transmission EM, she multiplies it by the checker matrix C'. So she now has the
matrix C(EM), which equals (CE)M by associativity. What are the dimensions of this matrix? What does
it look like?

Then your friend multiplies your transmission EM by the decoder matrix D. So she now has the matrix
D(EM) = (DE)M. What are its dimensions? What does it look like?

Try this entire process with various initial messages, other than 1101, until you can solve this problem:

Question L: Summarize this section: “If no errors occur in transmission, then C(EM) will always be...,
because.... D(EM) will always be..., because...”

5 Transmission with up to one error

Suppose again that you want to send your friend the message 1101. So you put it into a matrix M, compute
the matrix EM, and send EM to her.

Unfortunately, communications networks such as the Internet are noisy, due to equipment faults, electrical
disturbances, etc. Sometime between when you send EM and when your friend receives it, the first bit gets
flipped. That is, your friend receives the message EM + N, where N is the noise matrix

I
cCooc o oo~
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Remember that we’re working with matrices modulo 2. When we add EM to N, we reduce our answer
modulo 2. If the first bit of EM is 1, then the first bit of EM + N is 0, and vice-versa. So adding N to EM
really is flipping the first bit.

Your friend receives EM + N. She multiplies it by the checker matrix C. So now she has C(EM + N) =
(CE)M + CN, by distributivity and associativity. What does this look like?

By inspecting C(EM + N), your friend infers (magically?) that she must flip the first bit back. She does
this by adding N to EM + N. The result is EM. Why? Now that your friend has EM, she multiplies it by
the decoder matrix D, to obtain (DE)M — which is what, again?

Try this entire process, flipping the second bit instead of the first, flipping the third bit instead of the first,
and so forth. This procedure can be used to detect and correct any single-bit error in transmission. You
just have to figure out how the checking result C(EM + N) tells us which bit was flipped.

Question M: Describe (in words) the algorithm for detecting and correcting errors, under the assumption
that no more than one error has occurred. Part of this process is determining whether any error occurred,
remember! Implement this algorithm in your Python program as a function called correctOneError().

6 Transmission with up to two errors

Suppose again that you want to send your friend the message 1101. So you put it into a matrix M, compute
the matrix EFM, and send EM to her. But this time, two errors occur in transmission. She receives
EM 4+ N + P, where

I
o oo oo~
v
I
coocooro

0

She multiplies it by the checker matrix C, to obtain C(EM + N + P) = (CE)M + CN + CP.

Question N: If your friend follows through with her correction algorithm from the previous section, then
what happens?

There’s nothing special about the first two bits in the bit string. Play around with other combinations of
two errors, until you are sure that you understand what’s happening.

7 Two separate uses for the (7,4) Hamming code

Question O: Explain: If one or two errors occur, then the checking process cannot produce the 3 x 1 zero
matrix. If zero or three errors occur, then the checking process may produce the zero matrix.

Once you have completed this problem, you should understand this summary: The Hamming code can be
used in two distinct ways. On noisy communications lines, it can be used to detect (but not correct) up
to two errors. On communications lines that are known to be only slightly noisy, so that only one error is
likely to occur in a seven-bit transmission, the Hamming code can be used to detect and correct one error.
The Hamming code cannot be used for both purposes at the same time. That is, it cannot detect up to two
errors and correct one of those errors. Also, it cannot be used to detect three or more errors.




